

Anthony Wayne Local Schools

Course of Study Seventh Grade Mathematics

Anthony Wayne Local Schools Mathematics Belief Statements

All Generals will experience an innovative and engaging curriculum with instruction that is personalized, promotes creativity and application, and provides real-world experiences that facilitate deeper learning.

AWLS believes Mathematics instruction should:

- identify skill gaps for individual students and work to close them
- include engaging learning activities where all learners can grow through productive struggle.
- develop strong number sense with the ability to manipulate numbers and perform mental math with an emphasis on subitizing
- provide scenarios where real world problems help to provide a path towards being future ready students.
- develop strong mathematical modeling and reasoning skills that continually build on prior knowledge.
- encourage students to be risk takers, demonstrate resilience and grit, while solving complex mathematical problems.
- encourage flexibility, creativity, and communication while working collaboratively with peers.
- include consistent and cohesive academic vocabulary through all grade-levels that is utilized by both teachers and students

Sixth Grade Mathematics Course Description

7th Grade Math: Students in 7th-grade math will be learning content in correlation to the Ohio Learning Standards. Students will learn content in several domains of mathematics including The Number System, Ratio & Proportional Relationships, Expressions & Equations, Geometry, and Statistics & Probability. Students are expected to think mathematically, logically, and critically, problem solve, and show perseverance.

7th Grade Honors Math: For students in 7th grade who meet the required score on the placement exam given at the end of 6th grade. Students in honors 7th-grade math will be learning content in correlation to the 7th and 8th grade Ohio Learning Standards. Students will learn material including Rational Numbers and Exponents, Proportional Relationships, Creating, Comparing, & Analyzing Geometric Figures, Sampling and Inferencing, and an Intro to Algebra 1 concepts.

7th Grade Math:

Domain/ Conceptual Category	Standard	Standard Statement
		Unit 1A and Unit 1B Big Ideas #1, #2, #3, #4 and #5
The Number System	7.NS.1	Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers. 7.NS.1 Apply and extend previous understandings of addition and subtraction to add and subtract rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram. a. Describe situations in which opposite quantities combine to make 0. For example, a hydrogen atom has 0 charge because its two constituents are oppositely charged. b. Understand $p + q$ as the number located a distance $ q $ from p , in the positive or negative direction depending on whether q is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world contexts. c. Understand subtraction of rational numbers on the number line is the absolute value of their difference, and apply this principle in real-world contexts. d. Apply properties of operations as strategies to add and subtract rational numbers.
The Number System	7.NS.2	Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers. 7.NS.2 Apply and extend previous understandings of multiplication and division and of fractions to multiply and divide rational numbers. a. Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as $(-1)(-1) = 1$ and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts. b. Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If <i>p</i> and <i>q</i> are integers, then $-(p/q) = (-p)/q = p/(-q)$. Interpret quotients of rational numbers by describing real-world contexts.

		d. Convert a rational number to a decimal using long division; know that the decimal form of a rational
		number terminates in 0s or eventually repeats.
The Number	7.NS.3	Apply and extend previous understandings of operations with fractions to add, subtract,
System		multiply, and divide rational numbers.
		7.NS.3 Solve real-world and mathematical problems involving the four operations with rational numbers.
		Computations with rational numbers extend the rules for manipulating fractions to complex fractions.
		Unit 2; Big Ideas #6, #7 and #8
Expressions	7.EE.1	Use properties of operations to generate equivalent expressions.
and Equations		7.EE.1 Apply properties of operations as strategies to add, subtract, factor, and expand linear
		expressions with rational coefficients.
Expressions	7.EE.3	Solve real-life and mathematical problems using numerical and algebraic expressions and
and Equations		equations.
		7.EE.3 Solve multi-step real-life and mathematical problems posed with positive and negative rational
		numbers in any form (whole numbers, fractions, and decimals), using tools strategically. Apply
		properties of operations to calculate with numbers in any form; convert between forms as appropriate;
		and assess the reasonableness of answers using mental computation and estimation strategies. For
		example: If a woman making \$25 an hour gets a 10% raise, she will make an additional 1/10 of her
		salary an hour, or \$2.50, for a new salary of \$27.50. If you want to place a towel bar 93/4 inches long in
		the center of a door that is 271/2 inches wide, you will need to place the bar about 9 inches from each
		edge; this estimate can be used as a check on the exact computation.
Expressions	7.EE.4	Solve real-life and mathematical problems using numerical and algebraic expressions and
and Equations		equations.
		7.EE.4 Use variables to represent quantities in a real-world or mathematical problem, and construct
		simple equations and inequalities to solve problems by reasoning about the quantities.
		a. Solve word problems leading to equations of the form $px + q = r$ and $p(x + q) = r$, where p , q , and r are
		specific rational numbers. Solve equations of these forms fluently. Compare an algebraic solution to an
		arithmetic solution, identifying the sequence of the operations used in each approach. For example, the
		perimeter of a rectangle is 54 cm. Its length is 6 cm. What is its width?
		b. Solve word problems leading to inequalities of the form $px + q > r$ or $px + q < r$, where p , q , and r are
		specific rational numbers. Graph the solution set of the inequality and interpret it in the context of the

		problem. For example, as a salesperson, you are paid \$50 per week plus \$3 per sale. This week you
		want your pay to be at least \$100. Write an inequality for the number of sales you need to make, and
		describe the solutions.
		Unit 3; Big Idea #9
Ratios and	7.RP.1	Analyze proportional relationships and use them to solve real-world and mathematical problems.
Proportional		7.RP.1 Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other
Relationships		quantities measured in like or different units. For example, if a person walks 1/2 mile in each 1/4 hour,
		compute the unit rate as the complex fractionG (1/2) /(1/4) miles per hour, equivalently 2 miles per hour.
Ratios and	7.RP.2	Analyze proportional relationships and use them to solve real-world and mathematical problems.
Proportional		7.RP.2 Recognize and represent proportional relationships between quantities.
Relationships		a. Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent ratios in
		a table or graphing on a coordinate plane and observing whether the graph is a straight line through the
		origin.
		b. Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal
		descriptions of proportional relationships.
		c. Represent proportional relationships by equations. <i>For example, if total cost t is proportional to the</i>
		number n of items purchased at a constant price p, the relationship between the total cost and the
		number of items can be expressed as $t = pn$.
		d. Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation,
		with special attention to the points (0, 0) and (1, <i>r</i>) where <i>r</i> is the unit rate.
		Unit 4; Big Ideas #10 and #11
Ratios and	7.RP.3	Analyze proportional relationships and use them to solve real-world and mathematical problems.
Proportional		7.RP.3 Use proportional relationships to solve multistep ratio and percent problems. <i>Examples: simple</i>
Relationships		interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and
		decrease, percent error.
		Unit 5A; Big Ideas #12 and #13
Geometry	7.G.1	Draw, construct, and describe geometrical figures and describe the relationships between them.
-		7.G.1 Solve problems involving similar figures with right triangles, other triangles, and special
		quadrilaterals.

		a. Compute actual lengths and areas from a scale drawing and reproduce a scale drawing at a different
		scale.
		b. Represent proportional relationships within and between similar figures.
Geometry	7.G.2	Draw, construct, and describe geometrical figures and describe the relationships between them.
		7.G.2 Draw (freehand, with ruler and protractor, and with technology) geometric figures with given
		conditions.
		a. Focus on constructing triangles from three measures of angles or sides, noticing when the conditions
		determine a unique triangle, more than one triangle, or no triangle.
		b. Focus on constructing quadrilaterals with given conditions noticing types and properties of resulting
		quadrilaterals and whether it is possible to construct different quadrilaterals using the same conditions.
		Unit 5B; Big Ideas #14, #15, #16 and #17
Geometry	7.G.5	Solve real-life and mathematical problems involving angle measure, circles, area, surface area,
		and volume.
		7.G.5 Use facts about supplementary, complementary, vertical, and adjacent angles in a multi-step
		problem to write and solve simple equations for an unknown angle in a figure.
Geometry	7.G.4	Solve real-life and mathematical problems involving angle measure, circles, area, surface area,
		and volume.
		7.G.4 Work with circles.
		a. Explore and understand the relationships among the circumference, diameter, area, and radius of a
		circle.
		b. Know and use the formulas for the area and circumference of a circle and use them to solve
		real-world and mathematical problems.
Geometry	7.G.3	Draw, construct, and describe geometrical figures and describe the relationships between them.
		7.G.3 Describe the two-dimensional figures that result from slicing three-dimensional figures, as in plane
		sections of right rectangular prisms and right rectangular pyramids.
Geometry	7.G.6	Solve real-life and mathematical problems involving angle measure, circles, area, surface area,
		and volume.
		7.G.6 Solve real-world and mathematical problems involving area, volume, and surface area of two- and
		three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right prisms.
		Unit 6; Big Ideas #18 and #19

Statistics and	7.SP.5	Investigate chance processes and develop, use, and evaluate probability models.
Probability		7.SP.5 Understand that the probability of a chance event is a number between 0 and 1 that expresses
		the likelihood of the event occurring. Larger numbers indicate greater likelihood. A probability near 0
		indicates an unlikely event; a probability around 1/2 indicates an event that is neither unlikely nor likely;
		and a probability near 1 indicates a likely event.
Statistics and	7.SP.6	Investigate chance processes and develop, use, and evaluate probability models.
Probability		7.SP.6 Approximate the probability of a chance event by collecting data on the chance process that
		produces it and observing its long-run relative frequency, and predict the approximate relative frequency
		given the probability. For example, when rolling a number cube 600 times, predict that a 3 or 6 would be
		rolled roughly 200 times, but probably not exactly 200 times.
Statistics and	7.SP.7	Investigate chance processes and develop, use, and evaluate probability models.
Probability		7.SP.7 Develop a probability modelG and use it to find probabilities of events. Compare probabilities
		from a model to observed frequencies; if the agreement is not good, explain possible sources of the
		discrepancy.
		a. Develop a uniform probability modelG by assigning equal probability to all outcomes, and use the
		model to determine probabilities of events. For example, if a student is selected at random from a class,
		find the probability that Jane will be selected and the probability that a girl will be selected.
		b. Develop a probability model (which may not be uniform) by observing frequencies in data generated
		from a chance process. For example, find the approximate probability that a spinning penny will land
		heads up or that a tossed paper cup will land open-end down. Do the outcomes for the spinning penny
		appear to be equally likely based on the observed frequencies?
Statistics and	7.SP.8	Investigate chance processes and develop, use, and evaluate probability models.
Probability		7.SP.8 Find probabilities of compound events using organized lists, tables, tree diagrams, and
		simulation.
		a. Understand that, just as with simple events, the probability of a compound event is the fraction of
		outcomes in the sample spaceG for which the compound event occurs.
		b. Represent sample spaces for compound events using methods such as organized lists, tables and
		tree diagrams. For an event described in everyday language, e.g., "rolling double sixes," identify the
		outcomes in the sample space which compose the event.
		c. Design and use a simulation to generate frequencies for compound events. For example, use random
		digits as a simulation tool to approximate the answer to the question: If 40% of donors have type A

		blood, what is the probability that it will take at least 4 donors to find one with type A blood?
		Unit 7; Big Ideas #20 and #21
Statistics and	7.SP.1	Use sampling to draw conclusions about a population.
Probability		7.SP. 1 Understand that statistics can be used to gain information about a population by examining a
		sample of the population.
		a. Differentiate between a sample and a population.
		b. Understand that conclusions and generalizations about a population are valid only if the sample is
		representative of that population. Develop an informal understanding of bias.
Statistics and	7.SP.2	Broaden understanding of statistical problem solving.
Probability		7.SP.2 Broaden statistical reasoning by using the GAISE model.
		a. Formulate Questions: Recognize and formulate a statistical question as one that anticipates variability
		and can be answered with quantitative data. For example, "How do the heights of seventh graders
		compare to the heights of eighth graders?" (GAISE Model, step 1)
		b. Collect Data: Design and use a plan to collect appropriate data to answer a statistical question.
		(GAISE Model, step 2)
		c. Analyze Data: Select appropriate graphical methods and numerical measures to analyze data by
		displaying variability within a group, comparing individual to individual, and comparing individual to
		group. (GAISE Model, step 3)
		d. Interpret Results: Draw logical conclusions and make generalizations from the data based on the
		original question. (GAISE Model, step 4)

7th Grade Honors Math:

Domain/			
Conceptual	Standard	Standard Statement	
Category			
		Big Idea #1: Ratios & Proportions	
Ratios and	7.RP.1	Analyze proportional relationships and use them to solve real-world and mathematical	
Proportional		problems.	
Relationship		7.RP.1 Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and	
S		other quantities measured in like or different units. For example, if a person walks 1/2 mile in each	
		1/4 hour, compute the unit rate as the complex fractionG (1/2) /(1/4) miles per hour, equivalently 2	
		miles per hour.	
Ratios and	7.RP.2	Analyze proportional relationships and use them to solve real-world and mathematical	
Proportional		problems.	
Relationship		7.RP.2 Recognize and represent proportional relationships between quantities.	
S		a. Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent	
		ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin.	
		b. Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships.	
		c. Represent proportional relationships by equations. <i>For example, if total cost t is proportional to</i>	
		the number n of items purchased at a constant price p, the relationship between the total cost and	
		the number of items can be expressed as $t = pn$.	
		d. Explain what a point (x, y) on the graph of a proportional relationship means in terms of the	
		situation, with special attention to the points (0, 0) and (1, <i>r</i>) where <i>r</i> is the unit rate.	
	Big Idea #2: Percents		

Ratios and	7.RP.2	Analyze proportional relationships and use them to solve real-world and mathematical
Proportional		problems.
Relationship		7.RP.2 Recognize and represent proportional relationships between quantities.
S		a. Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent
		ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight line through the origin.
		b. Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and verbal descriptions of proportional relationships.
		c. Represent proportional relationships by equations. For example, if total cost t is proportional to
		the number n of items purchased at a constant price p, the relationship between the total cost and the number of items can be expressed as t = pn.
		d. Explain what a point (x , y) on the graph of a proportional relationship means in terms of the situation, with special attention to the points (0, 0) and (1, r) where r is the unit rate.
Ratios and	7.RP.3	Analyze proportional relationships and use them to solve real-world and mathematical
Proportional		problems.
Relationship		7.RP.3 Use proportional relationships to solve multistep ratio and percent problems. Examples:
s		simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error.
		Big Idea #3: Operations with Integers
The Number System	7.NS.1	Apply and extend previous understandings of operations with fractions to add, subtract, multiply, and divide rational numbers.
		7.NS.1 Apply and extend previous understandings of addition and subtraction to add and subtract
		rational numbers; represent addition and subtraction on a horizontal or vertical number line diagram.
		a. Describe situations in which opposite quantities combine to make 0. For example, a hydrogen atom has 0 charge because its two constituents are oppositely charged.
		b. Understand $p + q$ as the number located a distance $ q $ from p, in the positive or negative
		direction depending on whether <i>q</i> is positive or negative. Show that a number and its opposite have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing real-world contexts.

		c. Understand subtraction of rational numbers as adding the additive inverse, $p - q = p + (-q)$.
		Show that the distance between two rational numbers on the number line is the absolute value of
		their difference, and apply this principle in real-world contexts.
		d. Apply properties of operations as strategies to add and subtract rational numbers.
The Number	7.NS.2	Apply and extend previous understandings of operations with fractions to add, subtract,
System		multiply, and divide rational numbers.
		7.NS.2 Apply and extend previous understandings of multiplication and division and of fractions to
		multiply and divide rational numbers.
		a. Understand that multiplication is extended from fractions to rational numbers by requiring that
		operations continue to satisfy the properties of operations, particularly the distributive property,
		leading to products such as $(-1)(-1) = 1$ and the rules for multiplying signed numbers. Interpret
		products of rational numbers by describing real-world contexts.
		b. Understand that integers can be divided, provided that the divisor is not zero, and every
		quotient of integers (with non-zero divisor) is a rational number. If p and q are integers, then $-(p/q)$
		= (-p)/q = p/(-q). Interpret quotients of rational numbers by describing real-world contexts.
		c. Apply properties of operations as strategies to multiply and divide rational numbers.
		d. Convert a rational number to a decimal using long division; know that the decimal form of a
		rational number terminates in 0s or eventually repeats.
The Number	7.NS.3	Apply and extend previous understandings of operations with fractions to add, subtract,
System		multiply, and divide rational numbers.
-		7.NS.3 Solve real-world and mathematical problems involving the four operations with rational
		numbers. Computations with rational numbers extend the rules for manipulating fractions to
		complex fractions.
	•	Big Idea #4: Operations with Rational Numbers

The Number	7.NS.1	Apply and extend previous understandings of operations with fractions to add, subtract,
System		multiply, and divide rational numbers.
		7.NS.1 Apply and extend previous understandings of addition and subtraction to add and subtract
		rational numbers; represent addition and subtraction on a horizontal or vertical number line
		diagram.
		a. Describe situations in which opposite quantities combine to make 0. For example, a hydrogen
		atom has 0 charge because its two constituents are oppositely charged.
		b. Understand $p + q$ as the number located a distance $ q $ from p, in the positive or negative
		direction depending on whether <i>q</i> is positive or negative. Show that a number and its opposite
		have a sum of 0 (are additive inverses). Interpret sums of rational numbers by describing
		real-world contexts.
		c. Understand subtraction of rational numbers as adding the additive inverse, $p - q = p + (-q)$.
		Show that the distance between two rational numbers on the number line is the absolute value of
		their difference, and apply this principle in real-world contexts.
		d. Apply properties of operations as strategies to add and subtract rational numbers.
The Number	7.NS.2	Apply and extend previous understandings of operations with fractions to add, subtract,
System		multiply, and divide rational numbers.
		7.NS.2 Apply and extend previous understandings of multiplication and division and of fractions to
		multiply and divide rational numbers.
		multiply and divide rational numbers. a. Understand that multiplication is extended from fractions to rational numbers by requiring that
		multiply and divide rational numbers. a. Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property,
		multiply and divide rational numbers. a. Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as $(-1)(-1) = 1$ and the rules for multiplying signed numbers. Interpret
		multiply and divide rational numbers. a. Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as $(-1)(-1) = 1$ and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts.
		multiply and divide rational numbers. a. Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as $(-1)(-1) = 1$ and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts. b. Understand that integers can be divided, provided that the divisor is not zero, and every
		multiply and divide rational numbers. a. Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as $(-1)(-1) = 1$ and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts. b. Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If <i>p</i> and <i>q</i> are integers, then $-(p/q)$
		multiply and divide rational numbers. a. Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as $(-1)(-1) = 1$ and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts. b. Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If <i>p</i> and <i>q</i> are integers, then $-(p/q) = (-p)/q = p/(-q)$. Interpret quotients of rational numbers by describing real-world contexts.
		multiply and divide rational numbers. a. Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as $(-1)(-1) = 1$ and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts. b. Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If <i>p</i> and <i>q</i> are integers, then $-(p/q) = (-p)/q = p/(-q)$. Interpret quotients of rational numbers by describing real-world contexts.
		multiply and divide rational numbers. a. Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as $(-1)(-1) = 1$ and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts. b. Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If <i>p</i> and <i>q</i> are integers, then $-(p/q)$ = $(-p)/q = p/(-q)$. Interpret quotients of rational numbers by describing real-world contexts. c. Apply properties of operations as strategies to multiply and divide rational numbers. d. Convert a rational number to a decimal using long division; know that the decimal form of a
		multiply and divide rational numbers. a. Understand that multiplication is extended from fractions to rational numbers by requiring that operations continue to satisfy the properties of operations, particularly the distributive property, leading to products such as $(-1)(-1) = 1$ and the rules for multiplying signed numbers. Interpret products of rational numbers by describing real-world contexts. b. Understand that integers can be divided, provided that the divisor is not zero, and every quotient of integers (with non-zero divisor) is a rational number. If <i>p</i> and <i>q</i> are integers, then $-(p/q) = (-p)/q = p/(-q)$. Interpret quotients of rational numbers by describing real-world contexts. c. Apply properties of operations as strategies to multiply and divide rational numbers. d. Convert a rational number to a decimal using long division; know that the decimal form of a rational number terminates in 0s or eventually repeats.

The Number	7.NS.3	Apply and extend previous understandings of operations with fractions to add, subtract,
System		multiply, and divide rational numbers.
		7.NS.3 Solve real-world and mathematical problems involving the four operations with rational
		numbers. Computations with rational numbers extend the rules for manipulating fractions to
		complex fractions.
		Big Idea #5: Algebraic Expressions
Expressions	7.EE.1	Use properties of operations to generate equivalent expressions.
and		7.EE.1 Apply properties of operations as strategies to add, subtract, factor, and expand linear
Equations		expressions with rational coefficients.
Expressions	7.EE.2	Use properties of operations to generate equivalent expressions.
and		7.EE.2 In a problem context, understand that rewriting an expression in an equivalent form can
Equations		reveal and explain properties of the quantities represented by the expression and can reveal how
		those quantities are related. For example, a discount of 15% (represented by $p - 0.15p$) is
		equivalent to (1 – 0.15)p, which is equivalent to 0.85p or finding 85% of the original price.
Algebra	A.APR.1	Perform arithmetic operations on polynomials.
	(Linear)	A.APR.1 Understand that polynomials form a system analogous to the integers, namely, that they
		are closed under the operations of addition, subtraction, and multiplication; add, subtract, and
		multiply polynomials.
		a. Focus on polynomial expressions that simplify to forms that are linear or quadratic. (A1, M2)
		b. Extend to polynomial expressions beyond those expressions that simplify to forms that are
		linear or quadratic. (A2, M3)
		Big Idea #6: Solving Linear Equations
Expressions	7.EE.3	Solve real-life and mathematical problems using numerical and algebraic expressions and
and		equations.
Equations		7.EE.3 Solve multi-step real-life and mathematical problems posed with positive and negative
		rational numbers in any form (whole numbers, fractions, and decimals), using tools strategically.
		Apply properties of operations to calculate with numbers in any form; convert between forms as
		appropriate; and assess the reasonableness of answers using mental computation and estimation
		strategies. For example: If a woman making \$25 an hour gets a 10% raise, she will make an
		additional 1/10 of her salary an hour, or \$2.50, for a new salary of \$27.50. If you want to place a

		towel bar 93/4 inches long in the center of a door that is 271/2 inches wide, you will need to place
		the bar about 9 inches from each edge; this estimate can be used as a check on the exact
		computation.
Expressions	8.EE.7	Analyze and solve linear equations and pairs of simultaneous linear equations.
and		8.EE.7 Solve linear equations in one variable.
Equations		a. Give examples of linear equations in one variable with one solution, infinitely many solutions, or
		no solutions. Show which of these possibilities is the case by successively transforming the given
		equation into simpler forms, until an equivalent equation of the form $x = a$, $a = a$, or $a = b$ results
		(where <i>a</i> and <i>b</i> are different numbers).
		b. Solve linear equations with rational number coefficients, including equations whose solutions
		require expanding expressions using the distributive property and collecting like terms.
Algebra	A.CED.1	Create equations that describe numbers or relationships.
	(Linear)	A.CED.1 Create equations and inequalities in one variable and use them to solve problems.
		Include equations and inequalities arising from linear, quadratic, simple rational, and exponential
		functions. ★
		a. Focus on applying linear and simple exponential expressions. (A1, M1)
Algebra	A.REI.1	Understand solving equations as a process of reasoning and explain the reasoning.
		A.REI.1 Explain each step in solving a simple equation as following from the equality of numbers
		asserted at the previous step, starting from the assumption that the original equation has a
		solution. Construct a viable argument to justify a solution method.
Algebra	A.REI.3	Solve equations and inequalities in one variable.
		A.REI.3 Solve linear equations and inequalities in one variable, including equations with
		coefficients represented by letters.
	1	Big Idea #7: Solving Linear Inequalities

Expressions	7.EE.4	Solve real-life and mathematical problems using numerical and algebraic expressions and
and		equations.
Equations		7.EE.4 Use variables to represent quantities in a real-world or mathematical problem, and
		construct simple equations and inequalities to solve problems by reasoning about the quantities.
		a. Solve word problems leading to equations of the form $px + q = r$ and $p(x + q) = r$, where p, q,
		solution to an arithmetic solution, identifying the sequence of the operations used in each
		approach. For example, the perimeter of a rectangle is 54 cm. Its length is 6 cm. What is its width?
		b. Solve word problems leading to inequalities of the form $px + q > r$ or $px + q < r$, where p, q, and r
		are specific rational numbers. Graph the solution set of the inequality and interpret it in the context
		of the problem. For example, as a salesperson, you are paid \$50 per week plus \$3 per sale. This
		week you want your pay to be at least \$100. Write an inequality for the number of sales you need
		to make, and describe the solutions.
Algebra	A.CED.2	Create equations that describe numbers or relationships.
	(Linear)	A.CED.2 Create equations in two or more variables to represent relationships between quantities;
		graph equations on coordinate axes with labels and scales. \star
		a. Focus on applying linear and simple exponential expressions. (A1, M1)
Algebra	A.REI.3	Solve equations and inequalities in one variable.
		A.REI.3 Solve linear equations and inequalities in one variable, including equations with
		coefficients represented by letters.
		Big Idea #8: Angles & Triangles
Geometry	7.G.2	Draw, construct, and describe geometrical figures and describe the relationships between
		them.
		7.G.2 Draw (freehand, with ruler and protractor, and with technology) geometric figures with given
		conditions.
		a. Focus on constructing triangles from three measures of angles or sides, noticing when the
		conditions determine a unique triangle, more than one triangle, or no triangle.
		b. Focus on constructing quadrilaterals with given conditions noticing types and properties of
		resulting quadrilaterals and whether it is possible to construct different quadrilaterals using the
		same conditions.

Geometry	7.G.5	Solve real-life and mathematical problems involving angle measure, circles, area, surface
		area, and volume.
		7.G.5 Use facts about supplementary, complementary, vertical, and adjacent angles in a multi-step
		problem to write and solve simple equations for an unknown angle in a figure.
Geometry	8.G.5	Understand congruence and similarity using physical models, transparencies, or geometry
		software.
		8.G.5 Use informal arguments to establish facts about the angle sum and exterior angle of
		triangles, about the angles created when parallel lines are cut by a transversal, and the
		angle-angle criterion for similarity of triangles. For example, arrange three copies of the same
		triangle so that the sum of the three angles appears to form a line, and give an argument in terms
		of transversals why this is so.
	•	Big Idea #9: Scale Drawings & Similar Figures
Ratios and	7.RP.1	Analyze proportional relationships and use them to solve real-world and mathematical
Proportional		problems.
Relationship	1	7.RP.1 Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and
s		other quantities measured in like or different units. For example, if a person walks 1/2 mile in each
		1/4 hour, compute the unit rate as the complex fractionG (1/2) /(1/4) miles per hour, equivalently 2
		miles per hour.
Ratios and	7.RP.2	Analyze proportional relationships and use them to solve real-world and mathematical
Proportional		problems.
Relationship		7.RP.2 Recognize and represent proportional relationships between quantities.
s		a. Decide whether two quantities are in a proportional relationship, e.g., by testing for equivalent
		ratios in a table or graphing on a coordinate plane and observing whether the graph is a straight
		line through the origin.
		b. Identify the constant of proportionality (unit rate) in tables, graphs, equations, diagrams, and
		verbal descriptions of proportional relationships.
		c. Represent proportional relationships by equations. For example, if total cost t is proportional to
		the number n of items purchased at a constant price p, the relationship between the total cost and
		the number of items can be expressed as $t = pn$.
		d. Explain what a point (x, y) on the graph of a proportional relationship means in terms of the
		situation, with special attention to the points (0, 0) and (1, <i>r</i>) where <i>r</i> is the unit rate.

Ratios and	7.RP.3	Analyze proportional relationships and use them to solve real-world and mathematical	
Proportional		problems.	
Relationship		7.RP.3 Use proportional relationships to solve multistep ratio and percent problems. Examples:	
s		simple interest, tax, markups and markdowns, gratuities and commissions, fees, percent increase	
		and decrease, percent error.	
Geometry	7.G.1	Draw, construct, and describe geometrical figures and describe the relationships between	
		them.	
		7.G.1 Solve problems involving similar figures with right triangles, other triangles, and special guadrilaterals.	
		a. Compute actual lengths and areas from a scale drawing and reproduce a scale drawing at a	
		different scale.	
		b. Represent proportional relationships within and between similar figures.	
Big Idea #10: Circles, Volume & Surface Area			
Geometry	7.G.3	Draw, construct, and describe geometrical figures and describe the relationships between	
		them.	
		7.G.3 Describe the two-dimensional figures that result from slicing three-dimensional figures, as in	
		plane sections of right rectangular prisms and right rectangular pyramids.	
Geometry	7.G.4	Solve real-life and mathematical problems involving angle measure, circles, area, surface	
		area, and volume.	
		7.G.4 Work with circles.	
		a. Explore and understand the relationships among the circumference, diameter, area, and radius	
		of a circle.	
		real-world and mathematical problems.	
Geometry	7.G.6	Solve real-life and mathematical problems involving angle measure, circles, area, surface	
		area, and volume.	
		7.G.6 Solve real-world and mathematical problems involving area, volume, and surface area of	
		two- and three-dimensional objects composed of triangles, quadrilaterals, polygons, cubes, and	
		right prisms.	

Geometry	8.G.9	Solve real-world and mathematical problems involving volume of cylinders, cones, and spheres.
		8.G.9 Solve real-world and mathematical problems involving volumes of cones, cylinders, and
		spheres.
		Big Idea #11: Probability
Statistics	7.SP.5	Investigate chance processes and develop, use, and evaluate probability models.
and		7.SP.5 Understand that the probability of a chance event is a number between 0 and 1 that
Probability		expresses the likelihood of the event occurring. Larger numbers indicate greater likelihood. A
_		probability near 0 indicates an unlikely event; a probability around 1/2 indicates an event that is
		neither unlikely nor likely; and a probability near 1 indicates a likely event.
Statistics	7.SP.6	Investigate chance processes and develop, use, and evaluate probability models.
and		7.SP.6 Approximate the probability of a chance event by collecting data on the chance process
Probability		that produces it and observing its long-run relative frequency, and predict the approximate relative
		frequency given the probability. For example, when rolling a number cube 600 times, predict that a
		3 or 6 would be rolled roughly 200 times, but probably not exactly 200 times.
Statistics	7.SP.7	Investigate chance processes and develop, use, and evaluate probability models.
and		7.SP.7 Develop a probability modelG and use it to find probabilities of events. Compare
Probability		probabilities from a model to observed frequencies; if the agreement is not good, explain possible sources of the discrepancy.
		a. Develop a uniform probability modelG by assigning equal probability to all outcomes, and use the model to determine probabilities of events. <i>For example, if a student is selected at random</i>
		from a class, find the probability that Jane will be selected and the probability that a girl will be selected.
		b. Develop a probability model (which may not be uniform) by observing frequencies in data generated from a chance process. For example, find the approximate probability that a spinning penny will land heads up or that a tossed paper cup will land open-end down. Do the outcomes for
		the spinning penny appear to be equally likely based on the observed frequencies?

Statistics	7.SP.8	Investigate chance processes and develop, use, and evaluate probability models.
and		7.SP.8 Find probabilities of compound events using organized lists, tables, tree diagrams, and
Probability		simulation.
		a. Understand that, just as with simple events, the probability of a compound event is the fraction
		of outcomes in the sample spaceG for which the compound event occurs.
		b. Represent sample spaces for compound events using methods such as organized lists, tables
		and tree diagrams. For an event described in everyday language, e.g., "rolling double sixes,"
		identify the outcomes in the sample space which compose the event.
		c. Design and use a simulation to generate frequencies for compound events. For example, use
		random digits as a simulation tool to approximate the answer to the question: If 40% of donors
		have type A blood, what is the probability that it will take at least 4 donors to find one with type A
		blood?
		Big Idea #12: Statistics
Statistics	7.SP.1	Use sampling to draw conclusions about a population.
and		7.SP. 1 Understand that statistics can be used to gain information about a population by examining
Probability		a sample of the population.
		a. Differentiate between a sample and a population.
		b. Understand that conclusions and generalizations about a population are valid only if the sample
		is representative of that population. Develop an informal understanding of bias.
Statistics	7.SP.2	Broaden understanding of statistical problem solving.
and		7.SP.2 Broaden statistical reasoning by using the GAISE model.
Probability		a. Formulate Questions: Recognize and formulate a statistical question as one that anticipates
		variability and can be answered with quantitative data. For example, "How do the heights of
		seventh graders compare to the heights of eighth graders?" (GAISE Model, step 1)
		b. Collect Data: Design and use a plan to collect appropriate data to answer a statistical question.
		(GAISE Model, step 2)
		c. Analyze Data: Select appropriate graphical methods and numerical measures to analyze data
		by displaying variability within a group, comparing individual to individual, and comparing individual
		to group. (GAISE Model, step 3)
		d. Interpret Results: Draw logical conclusions and make generalizations from the data based on
		the original question. (GAISE Model, step 4)

Statistics	7.SP.3	Summarize and describe distributions representing one population and draw informal
and		comparisons between two populations.
Probability		7.SP.3 Describe and analyze distributions.
		a. Summarize quantitative data sets in relation to their context by using mean absolute deviationG
		(MAD), interpreting mean as a balance point.
		b. Informally assess the degree of visual overlap of two numerical data distributions with roughly
		equal variabilities, measuring the difference between the centers by expressing it as a multiple of a
		measure of variability. For example, the mean height of players on the basketball team is 10 cm
		greater than the mean height of players on the soccer team, about twice the variability (mean
		absolute deviation) on either team; on a dot plotG (line plot), the separation between the two
		distributions of heights is noticeable.
Statistics	8.SP.4	Investigate patterns of association in bivariate data.
and		8.SP.4 Understand that patterns of association can also be seen in bivariate categorical data by
Probability		displaying frequencies and relative frequencies in a two-way table. Construct and interpret a
		two-way table summarizing data on two categorical variables collected from the same subjects.
		Use relative frequencies calculated for rows or columns to describe possible association between
		the two variables. For example, collect data from students in your class on whether or not they
		have a curfew on school nights and whether or not they have assigned chores at home. Is there
		evidence that those who have a curfew also tend to have chores?
		Big Idea #13: Graphing & Writing Linear Equations
Expressions	8.EE.5	Understand the connections between proportional relationships, lines, and linear
and		equations.
Equations		8.EE.5 Graph proportional relationships, interpreting the unit rate as the slope of the graph.
		Compare two different proportional relationships represented in different ways. For example,
		compare a distance-time graph to a distance-time equation to determine which of two moving
		objects has greater speed.
Expressions	8.EE.6	Understand the connections between proportional relationships, lines, and linear
and		equations.
Equations		8.EE.6 Use similar triangles to explain why the slope <i>m</i> is the same between any two distinct
		points on a non-vertical line in the coordinate plane; derive the equation $y = mx$ for a line through
		the origin and the equation $y = mx + b$ for a line intercepting the vertical axis at b.

Functions	8.F.4	Use functions to model relationships between quantities.
		8.F.4 Construct a function to model a linear relationship between two quantities. Determine the
		rate of change and initial value of the function from a description of a relationship or from two (x, y)
		values, including reading these from a table or from a graph. Interpret the rate of change and initial
		value of a linear function in terms of the situation it models, and in terms of its graph or a table of
		values.
		Big Idea #14: Systems of Equations
Expressions	8.EE.7	Analyze and solve linear equations and pairs of simultaneous linear equations.
and		8.EE.7 Solve linear equations in one variable.
Equations		a. Give examples of linear equations in one variable with one solution, infinitely many solutions, or
		no solutions. Show which of these possibilities is the case by successively transforming the given
		equation into simpler forms, until an equivalent equation of the form $x = a$, $a = a$, or $a = b$ results
		(where <i>a</i> and <i>b</i> are different numbers).
Expressions	8.EE.8	Analyze and solve linear equations and pairs of simultaneous linear equations.
and		8.EE.8 Analyze and solve pairs of simultaneous linear equations graphically.
Equations		a. Understand that the solution to a pair of linear equations in two variables corresponds to the
		point(s) of intersection of their graphs, because the point(s) of intersection satisfy both equations
		simultaneously.
Algebra	A.SSE.1	Interpret the structure of expressions.
	(Linear)	A.SSE.1. Interpret expressions that represent a quantity in terms of its context. ★
		a. Interpret parts of an expression, such as terms, factors, and coefficients.
		b. Interpret complicated expressions by viewing one or more of their parts as a single entity.
Algebra	A.REI.10	Represent and solve equations and inequalities graphically.
	(Linear)	A.REI.10 Understand that the graph of an equation in two variables is the set of all its solutions
		plotted in the coordinate plane, often forming a curve (which could be a line).
Algebra	A.REI.12	Represent and solve equations and inequalities graphically.
		A.REI.12 Graph the solutions to a linear inequality in two variables as a half-plane (excluding the
		boundary in the case of a strict inequality), and graph the solution set to a system of linear
		inequalities in two variables as the intersection of the corresponding half-planes.
		Big Idea #15: Comparing Linear Functions

Expressions	8.EE.8	Analyze and solve linear equations and pairs of simultaneous linear equations.	
and		8.EE.8 Analyze and solve pairs of simultaneous linear equations graphically.	
Equations		c. Solve real-world and mathematical problems leading to pairs of linear equations in two	
		variables. For example, given coordinates for two pairs of points, determine whether the line	
		through the first pair of points intersects the line through the second pair. (Limit solutions to those	
		that can be addressed by graphing.)	
Expressions	8.EE.5	Understand the connections between proportional relationships, lines, and linear	
and		equations.	
Equations		8.EE.5 Graph proportional relationships, interpreting the unit rate as the slope of the graph.	
		Compare two different proportional relationships represented in different ways. For example,	
		compare a distance-time graph to a distance-time equation to determine which of two moving	
		objects has greater speed.	
Functions	8.F.2	Define, evaluate, and compare functions.	
		8.F.2 Compare properties of two functions each represented in a different way (algebraically,	
		graphically, numerically in tables, or by verbal descriptions). For example, given a linear function	
		represented by a table of values and a linear function represented by an algebraic expression,	
		determine which function has the greater rate of change.	
Functions	8.F.4	Use functions to model relationships between quantities.	
		8.F.4 Construct a function to model a linear relationship between two quantities. Determine the	
		rate of change and initial value of the function from a description of a relationship or from two (x, y)	
		values, including reading these from a table or from a graph. Interpret the rate of change and initial	
		value of a linear function in terms of the situation it models, and in terms of its graph or a table of	
		values.	
	Big Idea #16: Function Relationships		
Functions	8.F.1	Define, evaluate, and compare functions.	
		8.F.1 Understand that a function is a rule that assigns to each input exactly one output. The graph	
		of a function is the set of ordered pairs consisting of an input and the corresponding output.	
		Function notation is not required in Grade 8.	

Functions	8.F.3	Define, evaluate, and compare functions.
		8.F.3 Interpret the equation $y = mx + b$ as defining a linear function, whose graph is a straight line;
		give examples of functions that are not linear. For example, the function $A = s^2$ giving the area of a
		square as a function of its side length is not linear because its graph contains the points (1,1),
		(2,4) and (3,9), which are not on a straight line.
Functions	8.F.5	Use functions to model relationships between quantities.
		8.F.5 Describe qualitatively the functional relationship between two quantities by analyzing a
		graph, e.g., where the function is increasing or decreasing, linear or nonlinear. Sketch a graph that
		exhibits the qualitative features of a function that has been described verbally.